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Abstract: An essential component of the National security consists of the protection of its critical infrastructures 
(CIs), whether they are physical or virtual, as any disruption of their services could have a serious impact on 
economic well-being, public health or safety, or any combination of these. Any shutdown or delay may determine 
financial losses and major risks to people and the environment. All modern CIs are controlled by Industrial Control 
Systems (ICS) being dependent on their correct and continuous undisturbed functioning. Modern ICSs are 
inherently much less secure and exposed to the majority of cyber-attacks that are becoming more advanced and 
sophisticated. Consequently, efficient tools for the protection of hardware and software components of ICSs are 
required. One such class consists of intrusion prevention and detection systems (IPDS). Contemporary IPDSs use 
machine learning algorithms to detect threats manifested as anomalous behavior of a particular system. To provide 
robust detection systems with sufficient layers of protection, these must be combined with other methods and 
extensively tested with good datasets and using appropriate testbeds. Recent research suggests that conventional 
intrusion detection approaches are unable to cope with the complexity and ever-changing nature of industrial 
intrusion attacks. Moreover, deep learning methods are achieving state-of-the-art results across a range of difficult 
problem domains. The objective of our paper is to identify and discuss machine learning-based intrusion detection 
and protection methods and their implementation in industrial control intrusion detection systems, able to 
contribute to ensuring national security.  
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1. INTRODUCTION 
 

All modern critical infrastructures (CIs) are 
controlled by Industrial Control Systems (ICS) 
being dependent on their correct and continuous 
undisturbed functioning. ICSs are inherently much 
less secure and exposed to the majority of cyber-
attacks that are becoming more advanced and 
sophisticated. Consequently, efficient tools for 
protection of hardware and software components 
of ICSs are required. One such class are intrusion 
prevention and detection systems (IPDs). 

Contemporary IPDSs use machine learning 
algorithms to detect threats manifested as 
anomalous behavior of a particular system. To 
provide robust detection systems with sufficient 
layers of protection, these must be combined with 
other methods and extensively tested with good 
datasets and using appropriate testbeds. 

Recent research (Wilson et al., 2018; Yang et 
al., 2019) suggests that conventional intrusion 
detection approaches are unable to cope with the 
complexity and ever-changing nature of industrial 
intrusion attacks. Moreover, deep learning 
methods are achieving state-of-the-art results 
across a range of difficult problem domains. The 
objective of our paper is to identify and discuss 
cybersecurity vulnerabilities for ICSs, as well as 
proposed solutions that mitigate the threats, their 
inherent limitations that affect implementation in 
order to support industrial control intrusion 
detection systems, able to contribute to ensuring 
the security of CIs. Section 2 highlights the 
threats to which control systems are exposed 
today. Considering this landscape, Section 3 
addresses the search for defense techniques 
against APTs, especially intrusion detection 
systems. Finally, machine learning techniques for 
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intrusion detection systems, as well as the 
application of these mechanisms in practice, are 
presented in Sections 4 and 5, respectively. 
 

2. SPECIFIC VULNERABILITIES OF 
INDUSTRIAL CONTROL SYSTEMS 

 
A cyber-attack is an attempt to expose, alter, 

disable, destroy, steal or gain unauthorized access 
to or make unauthorized use of an information 
system, infrastructure, computer network, or other 
computing devices of a system that is executed by 
means of cyberspace (www.iso.org).  

A cybersecurity threat is a potential successful 
cyber-attack that could lead to gaining 
unauthorized access, damage, disruption, or steal 
an information technology asset, computer 
network, intellectual property or any other form of 
sensitive data. It also refers to the malicious 
activity that seeks to damage data, steal data, or 
disrupt digital life in general 
(https://www.upguard.com/blog/cyber-threat). The 
first step to tackling the cybersecurity threats 
consists in understanding where attacks can come 
from, how the attacks are enabled, and what 
damages could produce. 

Cybersecurity vulnerabilities have several 
different, but similar definitions in the literature. 
For example, Internet Engineering Task Force 
(IETF) defines vulnerabilities as “flaws or 
weaknesses in a system design, implementation, or 
operation and management that could be exploited 
in order to violate the system’s security policy” 
(RFC 4949). Analogously, the National Institute of 
Standards and Technology (NIST) promotes the 
following definition: “Weakness in an information 
system, system security procedures, internal 
controls, or implementation that could be exploited 
or triggered by a threat source” (NIST, 2020). 
Consequently, a vulnerability can be seen as a 
specific instance of a weakness and can be found 
in either software, hardware, a network or inside an 
organization. 

 
Figure 1. Cybersecurity Concepts Taxonomy (apud Atif et. 

al, 2018) 

When talking about malicious code such as 
viruses or worms, a vector represents the pathway 
used by that code to propagate itself or infect a 
computer. In the cybersecurity domain, an attack 
vector is a path or means by which an attacker can 
gain unauthorized access to a computer or network. 

The threat, risk, asset, and vulnerability are the 
main concepts of a cybersecurity taxonomy 
developed by Atif et. al (2018). 

According to this taxonomy (fig. 1), 
vulnerabilities cause the appearance of exploit 
vectors. Threat actors get a certain level of 
awareness about those exploit vectors and use 
them to generate threats.   

Threats generate attack vectors that could 
disrupt the infrastructure assets. Vulnerabilities 
induce risks to the assets by allowing temporary or 
permanent functioning disruptions. 

Macaulay (2016) distinguishes vulnerabilities 
and threats based on whether an action has been 
taken. A threat appears when a person, group or 
thing is acting, whereas a vulnerability exists as a 
flaw in a system. While the attack vectors are 
known, vulnerabilities are dynamic and cyber assets 
must continuously be monitored and assessed. In 
order to develop appropriate mitigation actions, it is 
necessary to understand how the Operational 
Technologies (OT) environment can be accessed 
and what impacts can be achieved. 

The main challenge present in the modern 
Industrial Control Systems (ICS) is due to the dual 
nature of their composing technologies (Amoroso & 
Ginter, 2018). On one side, Operational 
Technologies (OT), consisting of hardware and 
software that detects or causes changes in physical 
processes through direct monitoring and/or control 
of industrial equipment. On the other side, 
conventional ICT components connected with the 
corporate business information systems and the 
internet. The two different interface types can be 
related to different forms of vulnerability: 
degradation of communications or degradation of 
I/O control. 

In order to ensure the exchange of information 
with both IT and OT systems, Industrial Control 
System (ICS) component devices must provide both 
types of access points and connection capabilities 
across the ICS network or system interfaces. This is 
the main pathway of malicious actions on ICS. 
Firstly, besides classical security threats, 
conventional IT hacking tools and techniques 
become able to reach proximity to OT devices. 
Then, because the OT devices are not protected, an 
attack on OT control or the device directly could be 
executed (Amoroso & Ginter, 2018). 



Alexandru STANCIU, Vladimir FLORIAN, Ella-Magdalena CIUPERCA, Carmen Elena CIRNU 
 

316 
 

Macaulay & Singer (2011) when dealing with 
ICS vulnerabilities, have classified them from the 
perspective of security controls. They identified the 
following categories of security vulnerabilities: 
management (business), operational, and technical 
types. Management vulnerabilities are due to 
human flawed decisions and are basically 
deficiencies in enterprise risk management in ICS. 
They include: the lack of ICS security policies, 
management-level accountabilities and guidance 
and also bad security investment budgeting.  

ICS operational vulnerabilities consist in 
weaknesses the procedures and policies, like 
improper separation of duties for administrative 
accounts and roles, insecure Internet 
communication channels and wireless system 
deployments. There are also: improper incident 
detection, response, and reporting, poor change 
management, and poor vulnerability and 
acceptance testing procedures. 

Technical vulnerabilities are due to security 
weaknesses in hardware, software, and networks 
(Macaulay & Singer, 2011, Calvo et al., 2016) 
detailed a comprehensive synthesis of these. 
Accordingly, the following categories can be 
identified: (1) Platform and applications 
vulnerabilities, (2) Network vulnerabilities, (3) 
Vulnerabilities related to Communication Protocols. 

Platform and application vulnerabilities are 
deficiencies and flaws found in hardware, software 
and malware protection software of the system. 
They include: usage of outdated equipment and 
software; usage of default settings in applications; 
absence of backups of the critical configurations; 
inappropriate security configuration for remote 
access; inadequate authentication control at 
equipment and software level; software 
components containing errors that produce buffer 
overflow situations or resource unavailability due 
to traffic flooding (Denial-of-Service); missing or 
inadequate malware protection measures; improper 
configuration of the operating system; flawed 
designed applications. 

The main network vulnerabilities (Calvo et al., 
2016) are: ill-designed network architecture 
without adequate security measures; lack of 
backup or/and storing network settings; absence or 
poor authentication mechanisms at the protocol 
levels; bad management of network passwords; 
lack of network traffic monitoring; use of 
nonencrypted protocols (e. g. Telnet, FTP or 
wireless connections); lack of integrity checking at 
the hardware device level. 

Another major vulnerability in an OT/IT 
infrastructure is enabled by allowing critical and 

non-critical components to communicate across 
shared mechanisms such as a fieldbus. So, 
vulnerability paths to remote control are opened 
and hacks can occur even in the presence of proper 
network security controls. 

 
3. SPECIFIC THREATS AND 
CYBERSECURITY TOOLS 

 
As opposed to cyber-attacks against IT 

systems, usually oriented on data theft or financial 
loss, cyber-attacks against OT systems additionally 
focus on the disruption of cyber assets. They focus 
on operational impact trying to achieve loss, 
denial, or manipulation of view, control, safety, or 
sensors and instruments. According to (Ani, He & 
Tiwari, 2017) threats fall into one of six categories: 
(1) Denial of view (DoV), (2) Loss of view (LoV), 
(3) Manipulation of view (MoV), (4) Denial of 
control (DoC), (5) Loss of control (LoC), and (6) 
Manipulation of control (MoC). 

A DoV is caused by a temporary 
communication failure between a device and its 
control source, resolved when the interface 
recovers and becomes available. The reception of 
status and reporting messages is temporarily 
blocked. Thus, operator visibility is denied 
preventing him from noticing a change in state or 
anomalous behavior. It increases the risks of 
incorrect or damaging behaviors. 

A LoV results from a sustained or permanent 
interface communication failure and requires local 
hands-on user intervention. The impact of this 
threat is similar to DoV, but more severe because 
of the effort required to bring the system back to 
the expected functioning state. 

MoV is an attempt to manipulate the 
information reported back to the operator or to 
controllers. Harmful actions are enabled via 
information distortion (falsified ICS data) 
transmitted to the operator or controller. This 
manipulation may be short term or sustained. 

DoC is a threat to temporarily prevent the 
operator from controlling the processes and (or) 
devices. The affected process may still be 
operating during the period of control loss, but not 
necessarily in a desired state. The threat targets 
control devices, I/O control interface functions and 
only gets recovered as soon as it is removed. 

A LoC condition appears when the operator 
could be prevented from issuing any commands 
even if the malicious interference has vanished. 
The impact of LoC is similar to the impact of the 
LoV, but recovery can only be achieved via the 
operator’s interventions, such as system rebooting. 
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MoC, the most critical threat, appears when 
control system devices are controlled and altered by 
malicious actors. Manipulation of physical process 
control within the industrial environment becomes 
possible, legitimate process instructions, and operator 
commands can be overridden. The duration of 
manipulation may be temporary or longer sustained, 
depending on operator detection. Methods of 
Manipulation of Control include: Man-in-the-middle, 
spoof command message, changing setpoints. 

Starting from mid 2000s, a new type of 
cyberattack, the advanced persistent threat (APT) has 
posed an unprecedentedly dangerous threat to CIs. 
APTs are a category of cyber threats that are 
malicious, organized, highly sophisticated in their use 
of tactics, techniques and procedures (TTPs) and 
target IT networks for long-term access, in order to 
obtain information or sabotage one organization 
operations. As stated by NIST (Chen et al., 2014), 
their source is “An adversary that possesses 
sophisticated levels of expertise and significant 
resources which allow it to create opportunities to 
achieve its objectives by using multiple attack vectors 
(e.g., cyber, physical, and deception)”.  

Apart from traditional threats, the distinguishing 
characteristics of an APT are: it pursues its 
objectives repeatedly and for a long time, it adapts 
to defending actions by using stealthy and evasive 
attack techniques and “it maintains the level of 
interaction needed to execute its objectives”. 

APTs consist of a complex of actions, their life 
cycle including preparatory, acting and persisting 
stages. In Chen et al. (2014), one of the most 
detailed description, an APT contains six stages: (1) 
reconnaissance and weaponization; (2) delivery; (3) 
initial intrusion; (4) command and control; (5) 
lateral movement; (6) data exfiltration. First stage is 
intelligence gathering, mainly relying on the 
internet, active scan, and social engineering 
methods. Second and third stages cover the access 
and invasion into the target network through 
phishing emails, SQL injection, mobile storage 
devices and any other methods. In the fourth stage, 
remote control, by installing back door programs or 
Trojan programs, attackers control the user 
infrastructure and keep communication with the 
control servers via the network communication 
protocols. Next stage is lateral movement, attackers 
use vulnerability scanning, listen to network traffic 
for password, embedded remote control tool (RAT) 
and other methods, continue to search for important 
computers which store sensitive information. The 
final stage is data theft or system damaging by 
sending back sensitive data to servers or controlling 
devices. 

Besides raising risk awareness to these new 
categories of threats, an additional effort is needed 
to mitigate the risks posed by these threats in the 
ICS domain. This implies using a complex of 
measures and tools for the effective detection of 
APTs and other sophisticated threats. These should 
include combining traditional countermeasures 
(e.g., intrusion detection systems, firewalls, 
antivirus) with novel security techniques. 

When focusing on the OT domain of the ICS 
architecture, several specific security tools can be 
identified. From the perspective of their main 
functionality, these can be included in one of the 
following categories (Hurd & McCarty, 2017). 

Detection of the Indicator of Compromise 
(IOC). IOC is a forensic artifact, observable on the 
network or host, that indicates a computer intrusion 
with high confidence.  IOC examples include: 
signatures of known malware, traces of malicious 
network traffic and URLs or domains that are 
known malware sources. IOCs are directly linked to 
measurable events. A tool in this category is able to 
detect all malicious data generated by such events. 

Network Traffic Anomaly Detection. Network 
traffic anomaly detection tools are based on the 
statistical properties of the network where they are 
used. These properties refer to IP addresses, ports, 
frequencies of communication, packet content, etc. 
Anomaly detection does not necessarily require 
updates when new threats are detected. An 
anomaly detected on the network is, by definition, 
a new threat or a false positive. An anomaly 
detection tool should be able to be trained on a 
network for normal traffic, and then to use that 
model to determine anomalous traffic. 

Outlier Analysis. Tools in this category have 
the ability to analyze anomalous data for future 
threat intelligence. This data is usually identified 
by searching for meaningful differences across 
large datasets spanning many hosts that share 
common configurations.  

Log Review. Log review is the process of 
analyzing computer generated records of internal 
events, including a temporal reference. A log 
review tool does anomaly analysis within the logs 
in order to identify areas of interest in a log file or 
correlates different logs into a timeline of event 
activity. Other functionalities can include the 
removal of uninteresting data while maintaining 
the integrity of the log file.  

System Artifact Review. A system artifact 
review tool analyzes system artifacts that are 
created as a byproduct of execution. These could 
include registry files, data files, memory resident 
information, environment variables, or similar. 
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This tool should be capable of extracting all 
possibly useful information from the analysis and 
storing it for future execution. 

Reverse Engineering (RE) Analysis. A RE 
analysis tool extracts information from a given set 
of data. The data sources include files and/or 
firmware of a device and also network traffic. The 
tool is able to decompose software and firmware 
architectures and to display the information in an 
easy understandable structure that facilitates the 
RE process. 

The objective of an Intrusion Detection System 
(IDS) is to correctly detect attacks against 
networks with the lowest possible number of false 
positives. Recently, new anomaly-based detection 
techniques using machine earning have been used. 
Even in the research phase, many of them could 
provide satisfactory results, as regular ICS traffic is 
related to a limited number of requests and 
responses, making it clearly different from 
malicious traffic. 

 
4. MACHINE LEARNING TECHNIQUES 

FOR INTRUSION DETECTION SYSTEMS 
 

Machine learning techniques are suitable to be 
applied in various domains where is a need for 
adaptation to different types of data, as they 
provide an efficient way to learn a nonlinear 
system without the need to use a physical model. 

Specifically, for ICSs, in order to mitigate the 
security aspects related to the operation of the CIs, 
intrusion detection mechanisms need to be 
employed to protect against malicious attacks. 
Among the most acute security problems that 
affect the ICS, one of the most prominent is related 
to the legacy communication protocols that were 
not designed with security as a priority, but rather 
to optimize the performance and provide 
functionalities. Moreover, insecure deployments 
are caused by a lack of specific network 
segregation and access control mechanisms. 

In general, an IDS could be conceived as 
anomaly or signature based. The former is 
implemented using algorithms that calculate 
deviations from the normal behavior of the system, 
while the latter makes use of signature databases or 
known patterns in order to identify an intrusion. 

Another detection approach uses model-based 
techniques that characterize the acceptable 
behavior of the system and detect attacks that 
cause unacceptable behavior. These types of 
methods are applicable for detecting an intrusion 
based on the analysis of the network protocol (e.g. 
Modbus) or the network infrastructure, however 

they are of limited use because in practice it is 
difficult to construct such models. Moreover, as 
these models are not very accurate (as it is very 
difficult to capture all possible operating 
scenarios), this approach could cause many false 
alarms. 

The main task of anomaly detection systems is 
thus to monitor the network traffic or the 
parameters of the production installations in order 
to detect suspicious activity and to alert on possible 
attacks. The signature-based intrusion detection 
systems work well to recognize patterns that were 
already provided to them, however they are not so 
efficient for novel attacks or patterns that were not 
seen previously. Instead, an anomaly-based IDS is 
capable of learning new standard profiles and then 
to update its model such that new behavior can be 
learned and classified. 

The information about the network traffic and 
installation operation statistics is provided by 
management tools that monitor the system 
hardware and the communication links, such that 
the traffic can be characterized as normal or 
anomalous based on specific detection methods 
like pattern matching which detects anomalies by 
analyzing deviations from normal behaviors. In 
this case, the normal traffic of the system is used to 
build a model for normal behavior. In addition, 
usage profiles are created for different scenarios, 
using system parameters such as CPU utilization, 
network bandwidth, or processes in memory. 
These profiles are then used to evaluate if a 
particular data traffic pattern fits a predefined type, 
which could indicate an anomaly or a possible 
intrusion. 

However, anomaly detection in ICS is a 
challenging problem and it cannot solely depend 
on network protocol information. Additional 
information related to physical processes needs to 
be examined. This significantly increases the 
dimensionality and complexity of data samples. In 
addition, physical process control variables may 
exhibit noisy behaviors by nature, which is likely 
to result in high false-positive rates for anomaly 
detectors and low detection rates of attacks. There 
are several limitations with most existing solutions, 
as presented by (Feng et. al., 2017): the majority of 
the methods rely on predefined models and 
signatures to detect anomalous behaviors, and this 
approach requires human effort, which is 
inconsistent and error prone. These models are not 
capable of detecting unknown attacks because they 
use only known signatures, and they are 
specifically designed for specific use-cases, and 
lack the flexibility to adapt to new systems. 
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Nonetheless, machine learning is an essential 
component of the cybersecurity domain, as it is used 
in malware detection, events classification, and 
alerting. It is critical for the identification of 
infrastructure vulnerabilities and exploits (Fraley & 
Cannady, 2017). 

 
5. APPLICATIONS OF MACHINE 
LEARNING IN CYBERSECURITY  

 
Anomaly based intrusion detection techniques 

are capable of identifying unknown attacks as they 
follow the normal behavior of the system and 
observe any deviation from that baseline, and can be 
customized to different systems and network types 
(Xin et al., 2018). 

Advanced machine learning techniques such as 
Deep Learning have been widely applied to various 
application domains such as image processing, 
natural language processing or speech recognition. 
In the area of cybersecurity, numerous approaches 
have been proposed to tackle intrusion and malware 
detection, as well as phishing or spam detection 
(Mahdavifar & Ghorbani, 2019). 

For example, Bakalos et al. (2019) proposed an 
attack detection framework for critical water 
infrastructure protection based on multimodal data 
fusion and adaptive deep learning. Their solution is 
based on tapped delay line convolutional neural 
network (TDL–CNN), which contains a deep CNN 
with autoregressive moving-average attributes, that 
allows the model to better adapt to dynamic attack 
characteristics. 

A malicious threat detection model for cloud 
assisted internet of things (CoT) based industrial 
control system networks using Deep Belief Network 
(DBN) was proposed by (Huda et al., 2018). This 
system is based on two different types of deep 
learning based detection models - a disjoint training 
and testing data for a DBN and corresponding 
artificial neural network (ANN), and a DBN which 
is trained using new unlabeled data that can provide 
additional knowledge about the changes in the 
malicious attack patterns. 

While many existing solutions rely on human-
defined features to develop machine learning based 
attack detectors against prominent exploits, such 
features are becoming more expensive and less 
effective. To supplement more high-quality features 
for machine learning based threat monitoring, 
Wilson, Tang, Yan & Lu (2018) proposed a stacked 
autoencoder (SAE) based deep learning framework 
to develop machine-learned features against 
transmission SCADA attacks. Compared with the 
state-of-the-art machine learning detectors, the 

proposed framework leverages the automaticity of 
unsupervised feature learning to reduce the reliance 
on system models and human expertise in complex 
security scenarios. 

In He, Mendis & Wei (2017), a real-time 
detection mechanism based on deep learning 
techniques was introduced. This system is capable 
of recognizing the behavior patterns of False Data 
Injection (FDI) attacks using the historical 
measurement data. Deep learning techniques are 
used to capture the higher-order statistical structure 
of the complex data by arranging the feature 
detectors in layers. A Deep Belief Network is 
constructed with a stack of Restricted Boltzmann 
Machines (RBMs) in order to extract high-
dimensional temporal features. This DBN 
architecture is designed to analyze the temporal 
attack patterns that are presented by the real-time 
measurement data from the geographically 
distributed sensors/meters. 

Instead of relying on hand-crafted features for 
individual network packets or flows, Yang, Cheng, 
& Chuah (2019) employ a convolutional neural 
network (CNN) to characterize salient temporal 
patterns of SCADA traffic and identify time 
windows where network attacks are present. The 
model uses realistic SCADA traffic data sets and 
shows that the proposed deep-learning-based 
approach is well-suited for network intrusion 
detection in SCADA systems by achieving high 
detection accuracy and providing the capability to 
handle newly emerged threats. 
 

5. CONCLUSIONS 
 
The goal of this paper was to provide a better 

understanding of cybersecurity aspects that are 
relevant to the Industrial Control Systems on which 
CIs are dependent. The need to protect against 
malicious attacks is a paramount concern, as 
unknown vulnerabilities can be exploited with 
extremely damaging effects. To mitigate this risk, 
various intrusion detection techniques are used, and 
in particular, anomaly-based detection solutions are 
implemented using machine learning methods. We 
have presented a suite of examples related to deep 
learning architectures that are used in the 
cybersecurity domain, and which are relevant for 
the protection of Critical Infrastructures. 
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